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Nomenclature

A\ B coe.cients in series "00# and "02#\ respectively
F eigenfunction ðEq[ "3#Ł
J Bessel function of the _rst kind
M con~uent hypergeometric function
n� order to switch to asymptotic approximations
Pe Peclet number
r?\ r dimensional\ dimensionless radial coordinate\
r�r?:R9

R derivative "1F:1r#r�0
l�ln

R9 tube radius
x?\ x dimensional\ dimensionless axial coordinate\
x�x?:"R9 Pe#[

Greek symbols
o absolute error\ de_ned by Eqs[ "10# or "12#
h similarity variable\ h � 8x:1
u dimensionless temperature
l eigenvalue
j similarity variable\ j � "0−r#h−0:2

L derivative "1F:1l#r�0
l�ln

[

0[ Introduction

The Graetz problem describes the temperature "or con!
centration# _eld in fully!developed laminar ~ow in a cir!
cular tube where the wall temperature "or concentration#
pro_le is a step!function[ A great deal of analysis has
been performed on this fundamental problem] a detailed
survey of the relevant abundant literature may be found
in ð0Ł[

The in_nite series solution of the problem\ referred to
as the Graetz series\ is

u"x\r#� −1 s
n�0

� exp"−l1
nx#F"r\ln#

lnLn

"0#

whereas the series solutions for the bulk average tem!
perature and the local Nusselt number are

uav "x#�7 s
n�0

� Rn exp "−l1
nx#

l2
nLn

"1#

and

Nu"x#�
0
1

s
n�0

�

Rn exp "−l1
nx#:lnLn

s
n�0

�

Rn exp "−l1
nx#:l2

nLn

[ "2#

As _rst demonstrated by Lauwerier ð1Ł\ the eigen!
functions F"r\ ln# can be expressed in terms of the con!
~uent hypergeometric function M"a\ b\ z# "or Kummer|s
function# as follows

F"r\ln#�exp 0−
lnr

1

1 1M 0
1−ln

3
\0\lnr

11[ "3#

Moreover\ due to the boundary conditions\ the eigen!
values ln are the zeros of the transcendental equation[

M 0
1−ln

3
\0\ln1�9[ "4#

For the numerical evaluation of series "1# and "2# one
disposes a vast set of computational means ð0Ł[ However\
a well de_ned method that enables the numerical evalu!
ation of series "0# with known accuracy does not exist[
Such an evaluation is important in many applications\
for example\ in the interpretation of nucleation exper!
iments in ~ow di}usion chambers ð2\ 3Ł\ where\ due to
the extreme sensitivity of the supersaturation ratio on
temperature\ a detailed knowledge of the temperature
_eld near the entrance is required[

The obvious way to compute series "0# is _rst to cal!
culate accurately a _nite number of terms\ say up to
order n�\ and then calculate as many high!order terms
as necessary for convergence with the help of known
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asymptotic approximations ð4Ł[ However\ important
information is missing on the following points]

*What is precisely the order n� to switch to asymp!
totic approximations and\ more importantly\ how
does its value a}ect the accuracy of the _nal result[

*In the asymptotic regime "n×n�# there does not
exist a {ready to use| asymptotic formula for the
eigenfunctions\ uniform throughout the whole inter!
val 9³r³0[

*Even for orders n³n�\ the accurate numerical evalu!
ation of the eigenfunctions is not always evident[

Our objective is to provide explicit responses to the
above issues\ and thus establish a useful method for the
evaluation of the local solution[ As an aside\ the domain
in which the Le�ve¼que solution should be used is precisely
speci_ed[

Note that today with the help of sophisticated software
systems such as Mathematica ð5Ł it is possible to evaluate
all the required high!order parameters and functions via
their exact mathematical expression\ without resorting to
asymptotic methods[ In fact\ we have used Mathematica
to quantify the accuracy of our results[ However\ this
procedure requires computing time that is excessive\ if
not prohibitive\ for practical applications[ Therefore\
notwithstanding the availability of such powerful tools\
the present method is of value due to its computational
economy] it requires little programming e}ort\ and the
resulting algorithm can be executed quickly with modest
computing power[

1[ Evaluation of the eigenvalues and constants

The _rst 00 eigenvalues ln and derivatives Rn and Ln

have been calculated and tabulated with 09 decimal point
accuracy by Brown ð6Ł[ Sellars et al[ ð4Ł provided asymp!
totic formulae for all parameters ln\ Rn and Ln\ whereas
Newman ð7Ł obtained the following improved asymptotic
formula for ln

ln�vn¦S0v
−3:2
n ¦S1v

−7:2
n ¦S2v

−09:2
n ¦S3v

−00:2
n

¦O ðv−03:2
n Ł\ n�0\ 1\ [ [ [ "5#

where

vn�3n−3:2\ n�0\ 1\ [ [ [

S0�9[048041177\ S1�9[9003745243\

S2� −9[113620339\ S3� −9[922661590[ "6#

We have extended Newman|s method to obtain improved
asymptotic expressions for the derivatives Rn and Ln[
The approach consists of substituting Eq[ "5# for ln into
Lauwerier|s ð1Ł asymptotic expressions for 1F:1r and
1F:1l^ then\ a MacLaurin expansion with respect to
z�v−0:2

n about the point z�9 is performed "hence\ in the

limit vn:�# to obtain the following asymptotic
expressions

Rn�"−0#nPl0:2
n "0¦P0v

−3:2
n ¦P1v

−1
n

¦P2v
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n ¦P3v

−09:2
n ¦P4v

−00:2
n

¦O ðv−3
n Ł#\ n�0\ 1\ [ [ [ "7#

Ln�"−0#nQl−0:2
n "0¦Q0v

−3:2
n ¦Q1v

−1
n

¦Q2v
−6:2
n ¦Q3v

−7:2
n ¦Q4v

−09:2
n ¦Q5v

−00:2
n

¦O ðv−3
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The constants that appear in Eqs[ "7# and "8# are]

P�9[6005023099\ P0�9[9610564686\

P1�9[9466666670 P2� −9[9915939687\

P3�−9[9866236422\ P4� −9[9042030795

Q�9[6915175816\ Q0�−9[9610564688\

Q1� −9[9466666667 Q2�9[1011929403\

Q3�9[9967011283\ Q4�9[0959630072

Q5�9[9295172501[ "09#

Note that the leading!order terms of expansions "7# and
"8#* as well as the leading term of Newman|s expansion
"5#*are just the asymptotic expressions given in ð4Ł\
namely ln�3n−3:2\ Rn�"−0#n11:2l0:2

n 2−4:5:G"3:2# and
Ln�"−0#npl−0:2

n 5−1:2:G"1:2#[ However\ the additional
terms in "5#\ "7# and "8# improve accuracy substantially]
at n�00 their agreement with the exact results of Brown
is to 7 decimal places\ whereas the formulae of ð4Ł are
accurate only to two decimal places[

In conclusion\ by using the values of Brown ð6Ł for
nE00 and the expressions "5#\ "7# and "8# for n×00\ an
accuracy by more than eight decimal places is always
achieved for the eigenvalues ln and the constants Rn and
Ln[

2[ Evaluation of the eigenfunction

As can be seen from Eq[ "3#\ the evaluation of the
eigenfunctions F"r\ ln# involves the computation of the
con~uent hypergeometric function[ A fast algorithm for
the computation of M"a\ b\ z# over a wide range of
parameters a\ b and argument z\ does not seem to exist[
Computational di.culties arise as soon as z becomes
large and =a=�=b=\ as is precisely the case at high orders
n[

For small or moderate values of z\ the function
M"a\ b\ z# can be evaluated from its series expansion[ We
have considered two di}erent series expansions] one in
terms of Bessel functions "as originally considered in
ð8Ł#\ and one in terms of powers of r[ Employing the
expansions available in Abramowitz and Stegun ð09Ł\
and on account of Eq[ "3#\ the following computational
expressions are derived]
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*In terms of power series]

F"r\ ln#�exp 0−
lnr

1

1 1 s
m�9

�

Am "lnr
1#m "00#

with the coe.cients Am determined from the following
recurrence relation

A9�0\ Am�
3m−1−ln

"1m#1
Am−0\ m�0\ 1\ [ [ [ "01#

*In terms of Bessel function series]

F"r\ ln#� s
m�9

�

BmrmJm "lnr# "02#

with the coe.cients Bm determined from the following
recurrence relation

B9�0\ B0�9\ B1�0:1

Bm�
m−0

m
Bm−1−

ln

1m
Bm−2\ m�2\ 3\ [ [ [ "03#

At small orders n\ and with double precision ~oating
point arithmetics\ the numerical errors in the summation
of series "00# or "02# remain tolerable[ With increasing n
the errors increase\ and ultimately become catastrophic[
Hence\ asymptotic approximations become unavoidable
beyond some order n�[ Given that when n increases the
numerical error increases\ whereas the error of an asymp!
totic approximation decreases\ there exists a point where
the two errors become comparable[ This must be precisely
the optimum order to invoke asymptotic methods[

Before identifying the order n�\ a uniform asymptotic
expression for F"r\ ln# has to be established[ This can be
done with the help of the analytical results of Sellars et
al[ ð4Ł[ They provided a WKB asymptotic expansion valid
for intermediate r "F2#\ and two approximations to the
exact solution valid for r near the centreline "F0# and for
r near the wall "F1#\ as follows

F0�J9 "lnr# "04#

F1�"−0#n−0X
1"0−r#

2
J0:2 0

lnz7
2

"0−r#2:11 "05#

F2�X
1

plnr
cos ð"ln:1#rz0−r1¦"ln:1# arcsin r−p:3Ł

"0−r1#0:3
[

"06#

The original analysis of ð4Ł does not specify the functions
that connect these three expressions[ By invoking the
method of asymptotic matching of piecewise WKB
approximations and using some intermediate results of
the original analysis in ð4Ł\ we established the following
matching functions

F01�X
1

plnr
cos "lnr−p:3# "07#

F12�X
1

pln

cos ðz7:8ln "0−r#2:1−"ln−0#p:3Ł

10:3 "0−r#0:3
[ "08#

These matching functions enable the uniform asymptotic
approximation over the whole interval 9³r³0 to be
expressed as

F"r\ ln#�F0¦F1¦F2−F01−F12[ "19#

The absolute error in the computation of F"r\ ln# over
the whole interval is quanti_ed in terms of the L1!distance
between the exact and an approximate form of the func!
tion[ Accordingly\ for every order n the absolute error
over the interval 9³r³0 is de_ned by

o� $g
0

9

=F"r\ ln#−Fexact "r\ ln# =1 dr%
0:1

"10#

where the approximate eigenfunctions F"r\ ln# are
obtained either from the series "00# or "02#\ or from the
uniform asymptotic expansion "19#\ and the exact
Fexact"r\ ln# are evaluated with Mathematica ð5Ł\ via com!
puting the con~uent hypergeometric function with 01
decimal point accuracy\ and subsequent substitution of
the result in Eq[ "3#[

The results of the error analysis are shown in Fig[ 0[
Note that even for the very _rst orders n�0\ 1\ 2 the
asymptotic evaluation of the eigenfunctions is quite suc!
cessful[ This remark is an extension of a similar result
reported in ð4Ł with respect to the eigenvalues[ Not!
withstanding that\ up to moderately high n the accuracy
obtained from the series calculation is clearly much
better[ The Bessel series expansion "02# gives more accu!
rate results than the asymptotic expansion up to n�13\
while the power series expansion "00# is more accurate
up to n�20[ The Bessel series expansion was found to
perform better than the power series near the centre of
the tube and for intermediate r\ whereas close to the

Fig[ 0[ Absolute error in the computation of the eigenfunctions[
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wall the trend is opposite[ Hence\ the calculation can be
optimized by suitably combining the two series[ This was
con_rmed by a numerical experiment\ from which we
also determined that the optimum range to employ series
"02# is the interval 9³r¾9[752\ while for 9[752³r³0
use of series "00# should be made[ As shown in Fig[ 0\
with such a combination of series expansions\ all the
eigenfunctions up to n�31 can be evaluated with more
accuracy than that obtained with the asymptotic
expressions[

3[ Numerical results

The temperature _eld in the entrance region was cal!
culated by keeping 049 terms in the series[ Satisfactory
convergence was achieved for all points "x\ r# in the
domain x−2 = 09−4\ 9³r³0[ Eight separate calculations
were performed\ switching respectively to the asymptotic
regime at n��4\ 09\ 04\ 19\ 14\ 29\ 24 and 39[ The Le�ve¼que
solution was also calculated via the following extended
formula

u"x\ r#�U9 "j#¦h0:2U0 "j#¦h1:2U1 "j# "11#

where h and j are the usual Le�ve¼que similarity variables
"de_ned in the Nomenclature#\ the leading term U9"j# is
Le�ve¼que|s original solution\ and the next two terms
U0"j#\ U1"j# are those provided by Newman ð00Ł[

As before\ the absolute error of the calculated radial
temperature pro_le at x is obtained from the following
L1 norm

o� $g
0

9

=u"x\ r#−uexact "x\ r# =1 dr%
0:1

[ "12#

Here again\ uexact"x\ r# is calculated with Mathematica
ð5Ł\ which was used to generate all 049 eigenfunctions\
via the computation of the con~uent hypergeometric
function with 01 decimal point accuracy[ Note that this
reference calculation "each eigenfunction was evaluated
at 099 radial points# took approximately 74 h of CPU
time on a DEC!alpha workstation[ The results are given
in Fig[ 1[ It is clear that with increasing n� the accuracy
of the calculation increases considerably[ At constant n�
the error\ as expected\ increases with decreasing x[ By
increasing n�\ the improvement is large for large x\ while
at smaller x the improvement is signi_cantly smaller[
Regarding the Le�ve¼que solution\ it can be seen that the
inclusion of the extra two terms yields much higher accu!
racy[

Figure 1 delineates meaningfully the boundaries
between Graetz series and Le�ve¼que solution[ This
approach is similar to that employed by Luikov ð01Ł in
the study of conjugated heat transfer problems[ Also\
Fig[ 1 provides useful computational guidance because it
dictates how many eigenfunctions need to be calculated
non!asymptotically to obtain a given accuracy[ For

Fig[ 1[ Absolute error in the computation of the radial tem!
perature pro_les in the thermal entrance region[

x−2 = 09−4 the present method performs better than
either the common Le�ve¼que solution or its two!term
extended form[ If the comparison is made against the
three!term Le�ve¼que solution\ the application limit shifts
to x�7 = 09−4[ For smaller x the three!term Le�ve¼que
formula yields always higher accuracy\ unless more than
39 eigenfunctions are computed with more accuracy than
that obtained with asymptotic methods[ However\ n�39
is about the maximum order that can be evaluated non!
asymptotically[ It follows that the recommended appli!
cation range of the present method is] x−7 = 09−4\
9³r³0[ For x³7 = 09−4\ use of the three!term Le�ve¼que
formula is suggested[

4[ Conclusions

A method is presented that enables the thermal
entrance region to be calculated easily and with known
accuracy] the results are summarized in Fig[ 1[ New\ more
accurate asymptotic expressions for the derivatives Rn

and Ln have been provided\ cf[ Eqs[ "7# and "8#[ Also\ we
have described an approach that allows the evaluation of
up to the 31nd eigenfunction with better accuracy than
that obtained by asymptotic methods[ This is achieved
by employing Bessel series "02# and power series "00#\
over the intervals 9³rE9[752 and 9[752³r³0\ respect!
ively[ The method can be implemented with little pro!
gramming e}ort[
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